YELLOWSTONE — According to the USGS the likelihood of a volcanic supereruption from Yellowstone, or any other location on Earth, remains very low in any given year, yet the U.S. Geological Survey is frequently asked about the likely thickness and distribution of ash deposits if Yellowstone were to erupt.
This prompted USGS scientists to use a new computer model called Ash3D to simulate the distribution of volcanic ash from a hypothetical large explosive eruption at Yellowstone. A research paper explaining the results was published in Geochemistry, Geophysics, Geosystems on August 27, 2014, and we have developed some FAQ to help explain the background to this study.
The researchers discovered that during very large volcanic eruptions, ash transport is dominated by a rapidly expanding umbrella cloud that results in significant distribution of ash upwind from the volcanic vent. “In essence, the eruption makes its own winds that can overcome the prevailing westerlies that normally dominate weather patterns in the United States,” explained USGS geologist Larry Mastin, first author on the manuscript and co-developer of the computer model. “This helps explain the distribution from large Yellowstone eruptions of the past, where considerable amounts of ash reached the west coast.”
The authors also note that a fraction of an inch or less of ash is likely to be deposited at distances further than 1500 miles, such as on the east and west coasts of the United States. To learn more, please read our Frequently Asked Questions about the model and its application to Yellowstone.
-From a press release